High-yield porphyrin production through metabolic engineering and biocatalysis – Nature Biotechnology


  • Hiroto, S., Miyake, Y. & Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 117, 2910–3043 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barr, H. et al. Eradication of high-grade dysplasia in columnar-lined (Barrett’s) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet 348, 584–585 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Surdel, M. C. et al. Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc. Natl Acad. Sci. USA 114, E6652–E6659 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drury, S. L. et al. Simultaneous exposure to intracellular and extracellular photosensitizers for the treatment of Staphylococcus aureus infections. Antimicrob. Agents Chemother. 65, e0091921 (2021).

  • Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol. Adv. 55, 107904 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 3178–3193 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W., Lai, W. & Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S. et al. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 115, 10261–10306 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espinas, N. A., Kobayashi, K., Takahashi, S., Mochizuki, N. & Masuda, T. Evaluation of unbound free heme in plant cells by differential acetone extraction. Plant Cell Physiol. 53, 1344–1354 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • In, M.-J., Kim, D. C., Chae, H. J. & Oh, N.-S. Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci. Biotechnol. Biochem. 67, 365–367 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lichtenthaler, H. K. & Buschmann, C. Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr. Protoc. Food Anal. Chem. 1, F4.2.1–F4.2.6 (2001).

    Article 

    Google Scholar
     

  • Kwon Seok, J., de Boer Arjo, L., Petri, R. & Schmidt-Dannert, C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69, 4875–4883 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bali, S. et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc. Natl Acad. Sci. USA 108, 18260–18265 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dailey Harry, A. et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81, e00048-16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dailey, H. A., Gerdes, S., Dailey, T. A., Burch, J. S. & Phillips, J. D. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl Acad. Sci. USA 112, 2210–2215 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, H. et al. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 9, 4917 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. E. et al. Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, M. T. et al. Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth. Biol. 4, 274–282 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Heme biosensor-guided in vivo pathway optimization and directed evolution for efficient biosynthesis of heme. Biotechnol. Biofuels Bioprod. 16, 33 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, J. et al. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiol. 19, 173 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouchane, S., Picaud, M., Therizols, P., Reiss-Husson, F. & Astier, C. Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway. J. Biol. Chem. 282, 7690–7699 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toriya, M. et al. Zincphyrin, a novel coproporphyrin III with zinc from Streptomyces sp. J. Antibiot. (Tokyo) 46, 196–200 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, H. T. et al. Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439. Appl. Microbiol. Biotechnol. 104, 713–724 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleary, J. L., Kolachina, S., Wolfe, B. E. & Sanchez, L. M. Coproporphyrin III produced by the bacterium Glutamicibacter arilaitensis binds zinc and is upregulated by fungi in cheese rinds. mSystems. 3, e00036-18 (2018).

  • Zhao, X. R., Choi, K. R. & Lee, S. Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1, 720–728 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ko, Y. J. et al. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66, 217–228 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishchuk, O. P. et al. Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 119, e2108245119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, K. R., Yu, H. E. & Lee, S. Y. Production of zinc protoporphyrin IX by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 3319–3325 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, N. Metal ion transporters and homeostasis. EMBO J. 18, 4361–4371 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frunzke, J., Gätgens, C., Brocker, M. & Bott, M. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J. Bacteriol. 193, 1212–1221 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koripella, R. K. et al. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J. Biol. Chem. 287, 30257–30267 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, I., Maruhashi, K., Sato, H. & Fujiwara, Y. A highly active producer of coproporphyrin III and uroporphyrin III. J. Ferment. Bioeng. 76, 527–529 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Phosphate limitation increases coenzyme Q10 production in industrial Rhodobacter sphaeroides HY01. Synth. Syst. Biotechnol. 4, 212–219 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, T. et al. Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in Rhodobacter sphaeroides. Synth. Syst. Biotechnol. 6, 335–342 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. Q. E., Tan, T. S., Kawamukai, M. & Chen, E. S. Cellular factories for coenzyme Q10 production. Microb. Cell. Fact. 16, 39 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, W. et al. Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides. Metab. Eng. 29, 208–216 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z.-J. et al. Oxygen uptake rate controlling strategy balanced with oxygen supply for improving coenzyme Q10 production by Rhodobacter sphaeroides. Biotechnol. Bioprocess Eng. 25, 459–469 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klaus, O. et al. Engineering phototrophic bacteria for the production of terpenoids. Curr. Opin. Biotechnol. 77, 102764 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiang, S. et al. Elevated β-carotene synthesis by the engineered rhodobacter sphaeroides with enhanced CrtY expression. J. Agric. Food Chem. 67, 9560–9568 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orsi, E. et al. Growth-uncoupled isoprenoid synthesis in Rhodobacter sphaeroides. Biotechnol. Biofuels 13, 123 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J., Yang, H., Wang, X., Cao, W. & Guo, L. Strong pH dependence of hydrogen production from glucose by Rhodobacter sphaeroides.Int. J. Hydrog. Energy 45, 9451–9458 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Photoautotrophic hydrogen production of Rhodobacter sphaeroides in a microbial electrosynthesis cell. Bioresour. Technol. 320, 124333 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M. & Weusthuis, R. A. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol. Bioeng. 118, 531–541 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, J.-I. & Kaplan, S. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 1116–1123 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imam, S., Noguera, D. R. & Donohue, T. J. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet. 10, e1004837 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, Z. et al. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol. Adv. 30, 1533–1542 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishikawa, S. et al. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87, 798–804 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urakami, T. & Yoshida, T. Production of ubiquinone and bacteriochlorophyll a by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. J. Ferment. Bioeng. 76, 191–194 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Zeilstra-Ryalls, J. H. & Kaplan, S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J. Bacteriol. 177, 6422–6431 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, W. et al. Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides. Mol. Microbiol. 104, 278–293 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, Y. et al. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int. J. Hydrog. Energy 33, 963–973 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Qu, Y., Su, A., Li, Y., Meng, Y. & Chen, Z. Manipulation of the regulatory genes ppsR and prrA in Rhodobacter sphaeroides enhances lycopene production. J. Agric. Food Chem. 69, 4134–4143 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowan-Nash Aislinn, D., Korry Benjamin, J., Mylonakis, E. & Belenky, P. Cross-domain and viral interactions in the microbiome. Microbiol. Mol. Biol. Rev. 83, e00044-00018 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dailey, T. A. et al. Discovery and characterization of HemQ: an essential heme biosynthetic pathway component. J. Biol. Chem. 285, 25978–25986 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toriya, M., Yamamoto, M., Saeki, K., Fujii, Y. & Matsumoto, K. Antitumor effect of photodynamic therapy with zincphyrin, zinc-coproporphyrin III, in mice. Biosci. Biotechnol. Biochem. 65, 363–370 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto, M. et al. Production of singlet oxygen on irradiation of a photodynamic therapy agent, zinc-coproporphyrin III, with low host toxicity. Biometals 16, 591–597 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voigt, C. A. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lechardeur, D. et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis. J. Biol. Chem. 287, 4752–4758 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Z.-P., Du, Y., Fang, T.-T., Zhou, Y. & Ye, B.-C. Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice. Cell Host Microbe 31, 199–212 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. S. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celis, A. I. et al. Structure-based mechanism for oxidative decarboxylation reactions mediated by amino acids and heme propionates in coproheme decarboxylase (HemQ). J. Am. Chem. Soc. 139, 1900–1911 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths, M. & Stanier, R. Y. Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas spheroides. Microbiology 14, 698–715 (1956).

    CAS 

    Google Scholar
     

  • Skotnicová, P. et al. The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J. Biol. Chem. 293, 12394–12404 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanazireva, E. & Biel, A. J. Cloning and overexpression of the Rhodobacter capsulatus hemH gene. J. Bacteriol. 177, 6693–6694 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida, H., Kotani, Y., Ochiai, K. & Araki, K. Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol. 44, 19–26 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, L. C. D., McGlynn, P., Chaudhri, M. & Hunter, C. N. A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding hemF and the puc operon. Mol. Microbiol. 6, 3171–3186 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, J.-I., Eraso Jesus, M. & Kaplan, S. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 182, 3081–3087 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eraso, J. M. & Kaplan, S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J. Bacteriol. 176, 32–43 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, J.-I., Ko, I.-J. & Kaplan, S. The default state of the membrane-localized histidine kinase Prrb of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J. Bacteriol. 183, 6807–6814 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hornbeck, P. V. Enzyme-linked immunosorbent assays. Curr. Opin. Immunol. 110, 2.1.1–2.1.23 (2015).


    Google Scholar
     

  • Liang, M. et al. A CRISPR–Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat. Commun. 10, 3672 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, X. et al. An in vitro CRISPR–Cas12a-mediated protocol for direct cloning of large DNA fragments. STAR Protoc. 4, 102435 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link